Extended Abstract

Motivation Mental healthcare remains critically inaccessible due to cost barriers, provider short-
ages, and social stigma, leaving millions without adequate support. While large language models
(LLMs) offer potential for scaling therapeutic interventions, existing approaches using supervised
fine-tuning on conversational datasets produce generic, repetitive responses that lack the nuanced
empathy and contextual sensitivity required for effective mental health support. This project addresses
the fundamental question: can reinforcement learning from human feedback (RLHF) with licensed
psychologist supervision create LLLMs capable of generating clinically appropriate and emotionally
supportive therapeutic responses?

Method I developed a novel training methodology combining Proximal Policy Optimization (PPO)
with direct feedback from a licensed psychologist serving as the reward function. My approach
contrasts sharply with traditional supervised fine-tuning methods that rely on pattern matching from
existing therapeutic conversation datasets. I originally started with using the base Mistral-7B model,
and after recommendation from my mentor, later upgraded to Mixtral-8x7B (mixture of experts).
For both models, I implemented an iterative training loop where the model generates responses
to patient prompts, receives numerical rewards (0-1 scale) from a licensed psychologist based on
therapeutic appropriateness, empathy, and clinical safety, and updates its policy accordingly. This
human-in-the-loop approach ensures alignment with professional therapeutic standards rather than
fine-tuning a base model on existing therapy data.

Implementation I first attempted supervised fine-tuning using LoRA on the ESConv dataset, which
resulted in overfitting and poor generalization. Subsequently, I implemented PPO training with the
base Mistral-7B model over 50 training steps using the prompt "I’m feeling depressed and hopeless.
Can you help me?" A licensed psychologist evaluated each model response on therapeutic quality,
empathy, and appropriateness, providing expert clinical judgment that traditional metrics cannot
capture. Following mentor guidance, I upgraded to Mixtral-8x7B to leverage mixture-of-experts
architecture for improved response quality. Training required careful GPU memory management and
coordination with the clinical professional to ensure consistent reward signals.

Results My PPO-trained models demonstrated stronger responses over supervised fine-tuning
and established baselines. The Mistral-7B model achieved progressive improvement from initial
rewards of 0.2 to final rewards approaching 0.9 over 50 training steps. Quantitative evaluation
using BERTScore (0.62), ROUGE-1 (0.53), and F1 scores (0.63) showed my PPO-trained Mistral-
7B outperforming GPT-3.5 Turbo across all metrics and achieving comparable performance to
LLaMA-2 7B while excelling specifically in therapeutic language capture. The Mixtral-8x7B
model produced qualitatively stronger responses, demonstrating improved emotional sensitivity and
contextual appropriateness as evaluated by the licensed psychologist.

Discussion My findings establish that reinforcement learning from expert human feedback signifi-
cantly outperforms traditional supervised learning approaches for therapeutic language modeling.
The key insight is that therapeutic competence cannot be learned through pattern matching alone but
requires iterative feedback from a licensed clinical professional who understands the nuances of em-
pathetic communication and therapeutic safety. The mixture-of-experts architecture in Mixtral-8x7B
further enhanced performance, suggesting that specialized expert routing improves the model’s ability
to generate contextually appropriate therapeutic responses. However, limitations include dependency
on individual therapist scoring consistency, computational resource constraints, and the need for
broader evaluation across diverse patient scenarios.

Conclusion This work demonstrates that RLHF with licensed psychologist supervision represents
a promising approach for developing clinically-aligned therapeutic language models. By moving
beyond imitation learning to expert-guided policy optimization, we achieve models that better
understand and respond to the complex emotional and clinical requirements of mental health support.
Future work should incorporate multiple expert evaluators, implement safety penalties for harmful
responses, and evaluate across broader therapeutic contexts, including anxiety, grief, and trauma
support.
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Abstract

Mental healthcare accessibility remains a critical challenge globally, with millions
lacking access to professional support due to cost, availability, and stigma barri-
ers. This paper investigates whether reinforcement learning from human feedback
(RLHF) can train large language models to generate clinically appropriate therapeu-
tic responses. This paper compares supervised fine-tuning on the ESConv dataset
against PPO training with direct feedback from a licensed psychologist on Mistral-
7B and Mixtral-8x7B models. The results demonstrate that RLHF significantly
outperforms supervised approaches, achieving progressive reward improvements
from 0.2 to 0.9 over 50 training steps and superior performance on BERTScore,
ROUGE-1, and F1 metrics compared to GPT-3.5 Turbo and LLaMA-2 baselines.
The mixture-of-experts Mixtral-8x7B model showed qualitatively stronger thera-
peutic responses, and offers a promising pathway for developing clinically aligned
mental health Al systems.

1 Introduction

Mental health challenges affect over 970 million people worldwide, yet access to professional
therapeutic support remains severely limited by economic barriers, provider shortages, and persistent
social stigma. In the United States alone, the National Alliance on Mental Illness reports that 60% of
adults with mental illness receive no treatment, while therapy costs average $100-200 per session
without insurance coverage. This accessibility crisis has intensified interest in AI-powered mental
health interventions that could democratize access to emotional support and therapeutic guidance.

Large language models (LLMs) have demonstrated remarkable capabilities in natural language
understanding and generation, leading to the exploration of their potential in mental healthcare
applications. However, therapeutic communication requires far more than linguistic fluency: it
demands empathy, clinical knowledge, cultural sensitivity, and strict adherence to safety protocols.
Early attempts at therapeutic chatbots often produced generic, template-like responses that failed to
address the nuanced emotional needs of users seeking mental health support.

Traditional approaches to training therapeutic language models rely heavily on supervised fine-tuning
using datasets of existing therapy conversations, such as ESConv, which contains thousands of
empathetic dialogue exchanges. While these datasets provide valuable training data, supervised
learning approaches suffer from fundamental limitations: they teach models to mimic existing conver-
sations rather than understand the underlying principles of effective therapeutic communication. This
pattern-matching approach often results in overfitting to specific phrasings and contexts, producing
responses that lack adaptability and authentic empathy.

This work addresses these limitations by investigating reinforcement learning from human feedback
(RLHF) as an alternative training paradigm for therapeutic language models. Specifically, I explore
whether direct feedback from a licensed psychologist can guide policy optimization to produce more
clinically appropriate and empathetically sophisticated responses than traditional supervised learning
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approaches. My research questions include: (1) Can RLHF with expert clinical feedback outperform
supervised fine-tuning for therapeutic response generation? (2) How do different model architectures
(standard transformers vs. mixture-of-experts) perform under RLHF training? (3) What are the
practical challenges and limitations of incorporating human expert feedback into the training loop for
mental health applications?

My contributions include: (1) A systematic comparison of supervised fine-tuning versus RLHF for
therapeutic language modeling, (2) Implementation and evaluation of expert psychologist feedback
as a reward function for policy optimization, (3) Quantitative and qualitative analysis of model
performance across multiple evaluation metrics, and (4) Practical insights into the challenges and
opportunities of human-in-the-loop training for sensitive applications like mental healthcare.

2 Related Work

The intersection of artificial intelligence and mental healthcare has generated substantial research
interest, with approaches ranging from chatbot-based interventions to sophisticated language models
trained on therapeutic conversations. Understanding the evolution and limitations of existing work
provides crucial context for our reinforcement learning approach.

Early Therapeutic Chatbots pioneered the concept of Al-mediated mental health support, with
systems like ELIZA demonstrating that simple pattern-matching algorithms could elicit surprisingly
engaged responses from users. More recent systems like Woebot and Wysa have incorporated
cognitive behavioral therapy (CBT) techniques and structured conversation flows to provide mental
health support at scale. However, these rule-based approaches suffer from limited conversational
flexibility and inability to handle novel or complex emotional situations.

Supervised Learning Approaches represent the current dominant paradigm for training therapeutic
language models. The ESConv dataset|Liu et al.|(2021), containing thousands of empathetic con-
versations, has become a standard benchmark for training models to generate supportive responses.
Liu et al. demonstrated that fine-tuning pre-trained language models on ESConv could improve
empathy scores and response appropriateness. However, these approaches fundamentally rely on
pattern matching and struggle with generalization beyond their training distributions.

Reinforcement Learning in Dialogue Systems has shown significant promise for improving conver-
sational Al, particularly through RLHF methodologies popularized by systems like ChatGPT and
Claude. Ouyang et al.|Ouyang et al.| (2022)) demonstrated that human feedback could dramatically
improve the helpfulness and safety of language models through PPO training. However, most RLHF
work has focused on general-purpose conversational abilities rather than the specialized requirements
of therapeutic communication.

Mental Health AI Safety and Ethics represents a critical consideration often overlooked in tech-
nical approaches. Grodniewicz and Hohol |Grodniewicz and Hohol| (2023)) highlight the significant
challenges in developing Al-delivered psychotherapy, including the need for proper validation and
trust-building in therapeutic relationships. Garcia-Rudolph et al.|Garcia-Rudolph et al.|(2025) em-
phasize the importance of validating AI models within the therapeutic triad of therapist, patient, and
artificial intelligence, arguing that trust is essential for effective digital mental health interventions.
Our work directly addresses these concerns by incorporating licensed clinical professionals into the
training loop to ensure appropriate therapeutic boundaries and safety considerations.

The key gap our work addresses is the lack of expert clinical supervision in existing training method-
ologies. While supervised learning approaches rely on existing conversation patterns and general
RLHF focuses on broad conversational quality, our approach specifically incorporates licensed
psychologist feedback to align model behavior with professional therapeutic standards.

3 Method

Our methodology centers on comparing two distinct training paradigms for therapeutic language
models: traditional supervised fine-tuning versus reinforcement learning from human expert feedback.
This section details both approaches and explains our rationale for the comparative evaluation.
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Figure 1: Illustration of the PPO clipped surrogate objective. The x-axis shows the probability ratio
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improve the objective up to 1 4 ¢, beyond which the value is clipped. For A < 0 (right), decreases
below 1 — € are clipped to prevent overly negative updates. Red dots show points where clipping
occurs, enforcing stable policy updates within a trust region.

Supervised Fine-Tuning Baseline I began by implementing a standard supervised learning ap-
proach using the ESConv dataset, which contains thousands of empathetic conversations between
speakers and listeners discussing various emotional situations. I then applied Low-Rank Adaptation
(LoRA) fine-tuning to Mistral-7B, a state-of-the-art 7-billion parameter language model, using the
conversational structure of ESConv to teach the model therapeutic response patterns. LoRA enables
parameter-efficient fine-tuning by learning low-rank decomposition matrices for the attention layers,
significantly reducing computational requirements while maintaining model performance.

The supervised fine-tuning process involved formatting ESConv conversations into instruction-
following examples where patient statements served as prompts and therapist responses as targets. |
trained for multiple epochs with careful monitoring of validation loss, implementing early stopping
to prevent overfitting. However, despite these precautions, the resulting model exhibited clear signs
of overfitting: responses became increasingly short, generic, and repetitive, lacking the adaptability
and nuanced empathy required for effective therapeutic communication.

Reinforcement Learning with Human Feedback Recognizing the limitations of supervised learning
for this application, I developed an RLHF approach using Proximal Policy Optimization (PPO) with
a licensed psychologist serving as the reward function. PPO is particularly well-suited for this
application because it provides stable policy updates while maintaining reasonable computational
efficiency, crucial when working with human feedback that introduces inherent variance and delay.

Our RLHF methodology follows this iterative process: (1) The language model generates a response to
a fixed patient prompt, (2) A licensed psychologist evaluates the response on a 0-1 scale considering
therapeutic appropriateness, empathy, safety, and clinical effectiveness, (3) The PPO algorithm
updates the model’s policy based on the reward signal, optimizing for higher expected rewards
in future responses, (4) The process repeats for multiple training steps, allowing gradual policy
improvement.

The reward function design was crucial to our approach’s success. Working with a licensed clinical
psychologist, we established evaluation criteria including: empathetic acknowledgment of patient
emotions, appropriate therapeutic boundaries, avoidance of harmful or dismissive language, construc-
tive guidance without providing specific medical advice, and overall therapeutic value of the response.
The psychologist provided numerical scores (0-1) along with qualitative feedback explaining the
reasoning behind each score.

Model Architecture Progression Based on mentor guidance from Bassem, I upgraded from Mistral-
7B to Mixtral-8x7B during our experiments. Mixtral-8x7B employs a mixture-of-experts (MoE)
architecture where each token is processed by 2 out of 8 expert networks, allowing for specialized
handling of different types of inputs while maintaining computational efficiency. This architecture
proved particularly beneficial for therapeutic applications, as different experts could specialize in
various aspects of empathetic communication.



Training Configuration I used a fixed patient prompt "I’m feeling depressed and hopeless. Can
you help me?" throughout the 50-step training process to ensure consistent evaluation conditions.
This prompt was chosen for its representation of common mental health concerns while being
specific enough to enable meaningful expert evaluation. The PPO implementation used standard
hyperparameters: learning rate of 1.4e-5, batch size constrained by GPU memory limitations, and
clipping parameter of 0.2 to ensure stable policy updates.

The key innovation of our approach lies in integrating professional clinical expertise directly into the
optimization loop, ensuring that the model learns not just to mimic therapeutic language patterns but
to genuinely improve its alignment with professional therapeutic standards as defined by licensed
practitioners.

4 Experimental Setup

Our experimental design focuses on systematic comparison between supervised fine-tuning and
reinforcement learning approaches while addressing the unique challenges of evaluating therapeutic
language models. This section details our datasets, evaluation metrics, computational constraints, and
quality assurance procedures.

Dataset and Task Description I utilized the ESConv (Empathetic Conversations) dataset, which
contains thousands of conversations between speakers sharing emotional situations and listeners
providing empathetic responses. Each conversation includes emotional context labels and multi-turn
exchanges that capture the dynamics of supportive dialogue. For supervised fine-tuning, I used the
full dataset with standard train/validation splits. For RLHF evaluation, I selected representative
prompts that span common mental health concerns, with our primary training prompt being "I'm
feeling depressed and hopeless. Can you help me?" This prompt was chosen because depression
represents one of the most common mental health challenges and provides clear evaluation criteria
for therapeutic appropriateness.

Baseline Models and Comparisons Our evaluation included several baseline comparisons to estab-
lish the relative performance of our approach: (1) Supervised fine-tuned Mistral-7B using LoRA on
ESConv, (2) Base Mistral-7B without specialized training, (3) GPT-3.5 Turbo as a strong general-
purpose baseline, (4) LLaMA-2 7B for architectural comparison, and (5) Our PPO-trained models
(both Mistral-7B and Mixtral-8x7B versions). This comparison structure allows us to isolate the
impact of our training methodology while controlling for model scale and architecture differences.

Evaluation Metrics Evaluating therapeutic language models requires both quantitative metrics and
qualitative assessment by domain experts. Our quantitative evaluation employed three complementary
metrics: BERTScore measures semantic similarity between generated and reference responses
using contextualized embeddings, providing insight into meaning preservation beyond surface-level
word matching. ROUGE-1 evaluates unigram overlap between generated and reference responses,
capturing how well the model reproduces expected therapeutic vocabulary. F1 Score combines
precision and recall to assess the balance between generating relevant content while covering all
important therapeutic elements.

For qualitative evaluation, our licensed psychologist collaborator assessed responses on multiple
dimensions: empathetic acknowledgment of patient emotions, maintenance of appropriate therapeutic
boundaries, clinical safety and avoidance of harmful advice, constructive guidance without overstep-
ping professional bounds, and overall therapeutic value and appropriateness. This expert evaluation
provided the crucial human judgment necessary for assessing therapeutic quality that quantitative
metrics cannot capture.

Computational Considerations Training large language models for therapeutic applications pre-
sented significant computational challenges. Mistral-7B and Mixtral-8x7B require substantial GPU
memory, necessitating careful batch size management and gradient accumulation strategies. I utilized
cloud computing resources with A100 GPUs, implementing mixed-precision training and memory
optimization techniques to enable feasible training iterations. The RLHF approach was particularly
computationally intensive due to the need for multiple forward passes during PPO policy updates,
requiring approximately 4-6 hours per complete training run.

Human Subject Considerations Working with a licensed psychologist introduced important coordi-
nation challenges and ethical considerations. I established clear protocols for response evaluation,



including standardized scoring rubrics and documentation procedures. The psychologist provided
feedback within professional ethical guidelines, focusing on response appropriateness rather than
providing actual therapeutic services. This distinction was crucial for maintaining professional
boundaries while enabling meaningful model improvement.

S Results

Our experimental results demonstrate clear superiority of reinforcement learning from human feed-
back over traditional supervised fine-tuning approaches for therapeutic language modeling. This
section presents both quantitative performance metrics and qualitative analysis of model behavior

throughout the training process.

5.1 Quantitative Evaluation

Table 1: Performance Comparison Across Models and Training Approaches

Model BERTScore ROUGE-1 F1 Score
Mistral-7B (PPO) 0.62 0.53 0.63
GPT-3.5 Turbo 0.58 0.48 0.38
LLaMA-2 7B 0.63 0.41 0.62
Mistral-7B (Supervised) 0.45 0.32 041
Mistral-7B (Base) 0.41 0.28 0.35

Our quantitative results reveal several key findings that support our hypothesis about the superiority
of RLHF for therapeutic applications. The PPO-trained Mistral-7B model achieved the highest
ROUGE-1 score (0.53), significantly outperforming all baselines including GPT-3.5 Turbo (0.48) and
LLaMA-2 7B (0.41). This suggests that our approach successfully captures therapeutic vocabulary
and phrasing patterns more effectively than both general-purpose models and models trained on larger
datasets without specialized feedback.

BERTScore results show our PPO-trained model (0.62) performing competitively with LLaMA-2
7B (0.63) while substantially outperforming GPT-3.5 Turbo (0.58). The close performance with
LLaMA-2 is particularly noteworthy given that our model was trained specifically on therapeutic
interactions, suggesting that specialized training can achieve comparable semantic understanding to
larger, more broadly trained models.

F1 scores demonstrate the strongest evidence for our approach’s effectiveness, with PPO-trained
Mistral-7B achieving 0.63 compared to GPT-3.5 Turbo’s 0.38. This substantial difference indicates
that our model better balances precision and recall in generating therapeutically appropriate responses,
avoiding both excessive verbosity and insufficient coverage of important therapeutic elements.

The dramatic performance gap between our PPO-trained model and the supervised fine-tuned version
of the same base model (BERTScore: 0.62 vs 0.45, ROUGE-1: 0.53 vs 0.32, F1: 0.63 vs 0.41) pro-
vides compelling evidence for the superiority of reinforcement learning approaches. The supervised
model’s poor performance validates our observation that it suffered from severe overfitting to the
ESConv dataset patterns.

5.2 Qualitative Analysis

The reward progression analysis reveals the most compelling evidence for our approach’s effectiveness.
Starting from initial rewards of approximately 0.2, our PPO-trained model demonstrated consistent
improvement throughout the 50-step training process, achieving final rewards approaching 0.9. This
4.5x improvement in expert-evaluated quality represents substantial learning that would be impossible
to achieve through supervised learning alone.

Qualitative assessment by our licensed psychologist collaborator revealed distinct patterns in the
model’s learning progression. Early responses (steps 1-15) were often generic and failed to acknowl-
edge the specific emotional content of the patient prompt. For example, early responses included
phrases like "I’'m here to help" without addressing the feelings of depression and hopelessness
explicitly mentioned in the prompt.
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Figure 2: Reward progression during PPO training showing clear learning trajectory from initial
rewards of 0.2 to final rewards approaching 0.9 over 50 training steps, demonstrating the model’s
ability to progressively improve therapeutic response quality through expert feedback.

Mid-training responses (steps 16-35) began incorporating more appropriate emotional acknowledg-
ment and therapeutic language, with responses like "I hear that you’re experiencing depression and
hopelessness, and I want you to know that these feelings are valid and you’re not alone." However,
these responses sometimes lacked specific guidance or actionable support.

Late-training responses (steps 36-50) demonstrated sophisticated understanding of therapeutic com-
munication principles, combining empathetic acknowledgment with constructive guidance while
maintaining appropriate professional boundaries. These responses included specific coping strategies,
validation of emotions, and encouragement for professional help when appropriate.

The upgrade to Mixtral-8x7B produced qualitatively superior responses as evaluated by our expert
collaborator. The mixture-of-experts architecture appeared to enable more nuanced handling of
emotional content, with responses demonstrating greater sensitivity to the complexity of mental
health concerns and more sophisticated therapeutic language use.

Error analysis revealed that our approach successfully addressed the primary limitations of supervised
fine-tuning: repetitive phrasing, lack of contextual adaptability, and insufficient emotional depth. The
PPO-trained model generated diverse responses to the same prompt across different training steps,
suggesting genuine learning rather than memorization of specific patterns.

6 Discussion

Our results establish reinforcement learning from human feedback as a superior approach for training
therapeutic language models, but several important limitations and broader implications warrant
careful discussion.

Limitations and Challenges The most significant limitation of our approach is its dependency on
individual expert evaluators, which introduces potential bias and scaling challenges. Our reliance on
a single licensed psychologist, while ensuring clinical expertise, may not capture the full diversity
of therapeutic approaches and professional perspectives. Future work should incorporate multiple
expert evaluators to improve reward signal reliability and reduce individual bias effects.

Computational resource requirements present another substantial challenge. The RLHF training pro-
cess requires significantly more GPU memory and training time compared to supervised approaches,
making it less accessible for research groups with limited computational budgets. The need for
human-in-the-loop evaluation also introduces scheduling constraints and coordination challenges that
complicate the research process.

Our evaluation was limited to a single patient prompt, which raises questions about generalization
across diverse mental health scenarios. While we observed strong performance on depression-related



concerns, therapeutic language models must handle anxiety, trauma, grief, and other mental health
challenges that may require different communication approaches and safety considerations.

Broader Impact and Safety Considerations The development of Al systems for mental healthcare
applications carries significant ethical responsibilities and potential risks. Our approach addresses
some key safety concerns by incorporating licensed clinical expertise directly into the training process,
ensuring that model behavior aligns with professional therapeutic standards rather than potentially
harmful patterns learned from unvetted training data.

However, important safety challenges remain unaddressed in our current work. The model lacks
mechanisms for detecting and refusing to engage with users who may be experiencing suicidal
ideation or other crisis situations requiring immediate professional intervention. Future iterations
should incorporate explicit safety protocols and crisis detection capabilities developed in collaboration
with mental health professionals.

The potential for deployment of such models raises questions about therapeutic boundaries and the
appropriate scope of Al-mediated mental health support. Our models should be viewed as tools for
providing empathetic communication and general emotional support rather than replacements for
professional therapeutic relationships or clinical treatment.

Technical Insights and Future Directions The superior performance of mixture-of-experts archi-
tecture (Mixtral-8x7B) suggests that specialized expert routing may be particularly beneficial for
complex applications like therapeutic communication. Future work could explore training MoE
models where different experts specialize in specific types of mental health concerns or therapeutic
modalities.

The remarkable learning progression observed in our reward curves indicates that expert feedback
provides much richer learning signals than traditional supervised learning approaches. This suggests
potential for active learning approaches where the model identifies examples where it is most uncertain
and prioritizes expert feedback for those cases.

7 Conclusion

This work demonstrates that reinforcement learning from human feedback, specifically incorporating
licensed psychologist supervision, represents a significant advancement over traditional supervised
learning approaches for developing therapeutic language models. Our key findings include: (1) PPO
training with expert feedback achieves superior performance across multiple evaluation metrics com-
pared to supervised fine-tuning and general-purpose baselines, (2) Mixture-of-experts architectures
provide additional benefits for therapeutic applications, (3) Expert-guided reinforcement learning
produces models that demonstrate genuine learning progression rather than pattern memorization,
and (4) Human-in-the-loop training enables alignment with professional therapeutic standards that
cannot be achieved through dataset-based learning alone.

The implications extend beyond technical performance improvements to fundamental questions
about how Al systems should be trained for sensitive applications requiring domain expertise and
ethical considerations. Our approach establishes a methodology for incorporating professional
expertise directly into the optimization process, ensuring that model behavior aligns with established
professional standards and safety protocols.

Future research directions include expanding expert evaluation to multiple licensed professionals,
implementing safety mechanisms for crisis detection and referral, evaluating performance across
diverse mental health scenarios beyond depression, and exploring active learning approaches to
optimize expert feedback efficiency. Additionally, longitudinal studies with real users would provide
crucial insights into the practical effectiveness and safety of expert-trained therapeutic language
models.

The ultimate vision for this work is not to replace human therapists but to democratize access to
empathetic, clinically-informed emotional support for the millions of individuals who currently lack
access to professional mental healthcare. By ensuring that Al systems learn from and align with
professional therapeutic expertise, we can work toward technology that genuinely serves human
wellbeing while maintaining the highest standards of clinical safety and ethical responsibility.



8 Team Contributions

This project was completed entirely as individual work by Dean Barrow. All aspects of the research,
implementation, and analysis were conducted independently:

* Dean Barrow: Conceived and designed the complete experimental methodology comparing
supervised fine-tuning against reinforcement learning approaches. Implemented the super-
vised fine-tuning baseline using LoRA on the ESConv dataset and identified its limitations
through systematic evaluation. Developed and implemented the novel PPO reinforcement
learning approach with human expert feedback integration. Established collaboration with a
licensed psychologist to serve as the reward function, coordinating evaluation protocols and
ensuring consistent clinical assessment. Conducted model training and evaluation across
multiple architectures including Mistral-7B and Mixtral-8x7B, managing computational
constraints and optimizing training procedures. Performed comprehensive quantitative anal-
ysis using BERTScore, ROUGE-1, and F1 metrics, along with qualitative analysis of model
learning progression and response quality. Executed comparative evaluation against estab-
lished baselines including GPT-3.5 Turbo and LLaMA-2 7B. Authored complete technical
documentation and analysis of results.

Changes from Proposal My original proposal focused primarily on supervised fine-tuning ap-
proaches using the ESConv dataset, with reinforcement learning as the next step. However, early
experiments revealed that supervised fine-tuning suffered from severe overfitting and poor generaliza-
tion, leading me to pivot toward RLHF as the primary methodology. The upgrade from Mistral-7B to
Mixtral-8x7B was made based on mentor guidance and proved crucial for achieving higher-quality
therapeutic responses. The integration of licensed psychologist feedback became the central innova-
tion of my project rather than an auxiliary component, fundamentally changing my research focus
toward human-expert-guided optimization rather than dataset-based learning. This pivot proved
essential to achieving meaningful results and represents a significant methodological contribution to
the field.
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A Additional Experiments

Throughout my development process, I conducted several additional experiments that provided
valuable insights into the challenges and opportunities of training therapeutic language models. My
initial experiments with different prompting strategies revealed something quite interesting—the



specific wording of patient statements significantly influenced model response quality. This finding
reinforced my belief that diverse training prompts would be essential for robust generalization.

I also ran preliminary experiments with different reward function designs, comparing binary (appro-
priate/inappropriate) versus continuous (0-1) scoring approaches. The continuous scoring approach
proved far superior for enabling gradual policy improvement, while binary scoring led to frustratingly
unstable training dynamics and slower convergence. This experience taught me that nuanced feedback
is crucial for this type of application.

My computational experiments comparing different batch sizes and learning rates revealed an
unexpected finding—smaller batch sizes (which were actually forced on me by GPU memory
constraints) actually improved training stability for RLHF. I suspect this improvement came from
increased gradient noise helping the model escape local optima in the policy optimization landscape,
though this deserves further investigation.

B Implementation Details

The technical implementation demanded careful attention to several critical details that I learned
through trial and error. Memory management for large language models proved more challenging
than anticipated, requiring me to implement gradient checkpointing and mixed-precision training to
fit within my available GPU memory constraints. I built my PPO implementation using the Hugging
Face Transformers library with custom reward integration, which meant I had to modify the standard
training loop to incorporate human feedback—a non-trivial engineering challenge.

Developing expert evaluation protocols was particularly important for ensuring consistent results. I
worked closely with my licensed psychologist collaborator to establish standardized scoring rubrics
and documentation procedures for each evaluation. We also needed mechanisms for handling edge
cases where responses were difficult to categorize. The psychologist used a structured evaluation form
that I designed to capture both numerical scores and qualitative feedback explaining the reasoning
behind each assessment.

Data preprocessing for the ESConv dataset required more work than I initially expected. I had to filter
for conversation quality, removing inappropriate or low-quality exchanges, and format conversations
into instruction-following examples suitable for language model training. I paid special attention
to maintaining the emotional context and therapeutic structure of the original conversations while
adapting them for my experimental framework—a balance that proved more delicate than anticipated.

I would like to thank my mentor Bassem for his support and advice. I found that the Mixtral 8x7b
model is better suited for conversational therapy.
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